Special types of functions

Polynomials

Polynomial is formula as below;

\displaystyle f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n

If a_0 \neq 0, n is called as degree of polynomials.

\displaystyle (a + x)^n = a^n + \left(\frac{n}{1}\right)a^{n -1}x + \left(\frac{n}{2}\right)a^{n -2}x^2 + \cdots + x^n

where the binomial coefficients are given by

\displaystyle \left(\frac{n}{k}\right) = \frac{n!}{k!(n - k)!}
and where factorial n, i.e. n! = n(n -1)(n-2)…1 while 0! = 1 by definition.

Exponential function

\displaystyle f(x) = a^x

An important special case occurs where a = e = 2.718…

Exponential law

  1. \displaystyle a^{m + n} = a^m \cdot a^n
  2. \displaystyle a^{m - n} = \frac{a^m}{a^n},\ a \neq 0
  3. \displaystyle (a^m)^n = a^{mn}

Logarithmic function

\displaystyle f(x) = \log_a x

These functions are inverse of the exponential functions, i.e. if ax = y then x = logay where a is called the base of the logarithm. If a = e, which is often called the natural base of logarithm, it’s described loge by ln x, called the natural logarithm of x.

Logarithmic law

  1. \displaystyle \ln(mn) = \ln(m) + \ln(n)
  2. \displaystyle \ln\frac{m}{n} = \ln(m) - \ln(n)
  3. \displaystyle \ln{m^p} = p\ln{m}

特殊な関数

多項式

多項式は下記のように表現します.

\displaystyle f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n

 a_0 \neq 0 の時, n は多項式の次数といいます.

\displaystyle (a + x)^n = a^n + \left(\frac{n}{1}\right)a^{n -1}x + \left(\frac{n}{2}\right)a^{n -2}x^2 + \cdots + x^n

二項係数は下記のように表現します.

\displaystyle \left(\frac{n}{k}\right) = \frac{n!}{k!(n - k)!}

n の階乗は n! = n(n -1)(n-2)…1 であり,定義上 0! = 1 となります.

指数関数

\displaystyle f(x) = a^x

 a = e = 2.718… の時,特殊な例が発生します.

指数法則

  1. \displaystyle a^{m + n} = a^m \cdot a^n
  2. \displaystyle a^{m - n} = \frac{a^m}{a^n},\ a \neq 0
  3. \displaystyle (a^m)^n = a^{mn}

対数関数

\displaystyle f(x) = \log_a x

対数関数は指数関数の逆関数です.仮に ax = y である時,逆関数は x = logay であり a は対数の底と呼びます.a = e の時,それを自然対数の底と呼び,x の自然対数 logex のことを ln x と表現します.

対数法則

  1. \displaystyle \ln(mn) = \ln(m) + \ln(n)
  2. \displaystyle \ln\frac{m}{n} = \ln(m) - \ln(n)
  3. \displaystyle \ln{m^p} = p\ln{m}