Uniform convergence

The ideas of previous article can be extended to the case where the un are functions of x denoted by un(x). In such case the sequences or series will converge of diverge according to the particular value of x. The set of values of x for which a sequence or series converges is called the region of convergence, denoted \cal R.

The series u1(x) + u2(x) + … converges to the sum S(x) in a region \cal R if given ε > 0 there exists a number N, which in general depends on both ε and x, such that |S(x) – Sn(x)| < ε whenever n > N where Sn(x) = u1(x) + … + un(x). If you can find N depending only on ε and not on x, the series converges uniformly to S(x) in \cal R. Uniformly convergent series have many important advantages as indicated in the following theorems.

  1. If un(x), n = 1, 2, 3, … are continuous in a ≤ x ≤ b and ∑ un(x) is uniformly convergent to S(x) in a ≤ x ≤ b, then S(x) is continuous in a ≤ x ≤ b.
  2. If ∑u(x) converges uniformly to S(x) in a ≤ x ≤ b and un(x), n = 1, 2, 3, … are integrable in a ≤ x ≤ b, then
    \displaystyle \int^{b}_{a}S(x)dx = \int^{b}_{a}(u_1(x) + u_2(x) + \cdots)dx = \int^{b}_{a}u_1(x)dx + \int^{b}_{a}u_2(x)dx + \cdots
  3. If un(x), n = 1, 2, 3, … are continuous and have continuous derivatives in a ≤ x ≤ b and if ∑un(x) converges to S(x) while ∑u’n(x) is uniformly convergent in a ≤ x ≤ b, then
    \displaystyle S'(x) = \frac{d}{dx}(u_1(x) + u_2(x) + \cdots) = u'_1(x) + u'_2(x) + \cdots
  4. If there is aset of positive constants Mn, n = 1, 2, 3, … such that |un| ≤ Mn in \cal R and ∑Mn converges, then ∑un(x) is uniformly convergent [and also absolutely convergent] in \cal R.

An important test for uniform convergence, often called the Weierstrass M test, is given by the above.

一様収束

 前回の記事で述べた考えは un が x の関数の場合,un(x) と記述するが,に拡張できます.そのような場合,数列または級数が収束するか発散するかは x の特定の値に依存します.数列や級数が収束する x の値の集合は収束領域と呼ばれ,\cal R と表記します.

 級数 u1(x) + u2(x) + … は領域 \cal R 内の S(x) の合計に収束します,もし ε > 0 があってε と x の両者に依存するある数 N があり,|S(x) – Sn(x)| < ε を満たし,常に n > N であって Sn(x) = u1(x) + … + un(x) の場合には.もし ε のみに依存し,x には依存しない N を見つけられるなら,その級数は \cal R 内の S(x) に一様収束します.一様収束級数には次の定理に示すように多くの利点があります.

  1. 仮に un(x), n = 1, 2, 3, … が a ≤ x ≤ b の範囲で連続であり,かつ ∑ un(x) が a ≤ x ≤ b の範囲で S(x) に一様収束するなら S(x) は a ≤ x ≤ b の範囲で連続である.
  2. 仮に ∑u(x) が S(x) に a ≤ x ≤ b の範囲で一様収束し,かつ un(x), n = 1, 2, 3, … が a ≤ x ≤ b の範囲で積分可能である場合は以下が成り立つ.
    \displaystyle \int^{b}_{a}S(x)dx = \int^{b}_{a}(u_1(x) + u_2(x) + \cdots)dx = \int^{b}_{a}u_1(x)dx + \int^{b}_{a}u_2(x)dx + \cdots
  3. 仮に un(x), n = 1, 2, 3, … が連続でかつ a ≤ x ≤ b の範囲で連続して微分可能であり,さらに ∑un(x) が S(x) に収束し,∑u’n(x) が a ≤ x ≤ b の範囲で一様収束するなら以下が成り立つ.
    \displaystyle S'(x) = \frac{d}{dx}(u_1(x) + u_2(x) + \cdots) = u'_1(x) + u'_2(x) + \cdots
  4. 正の定数 Mn が存在し n = 1, 2, 3, … で \cal R 領域内の Mn において |un| ≤ Mn であり,かつ ∑Mn が収束する場合,故に ∑un(x) は \cal R に一様収束する.

 一様収束の重要な判定法があり,しばしば Weierstrass M test と呼ばれますが,上記に示したとおりです.