The Taylor series for f(x) about x = a is defined as
(a)
where , x0 between a and x.(b)
is called the reminder and where it is supposed that f(x) has derivatives of order n at least. The case where n = 1 is often called law of the mean or mean-value theorem and can be written as
, x0 between a and x (c)The infinite series corresponding to (a), also called the formal Taylor series for f(x), will converge in some interval if in this interval. Some important Taylor series together with their intervals of convergence are as follows.
A series of the form is often called a power series. Such power series are uniformly convergent in any interval which lies entirely within the interval of convergence.
日: 2013年12月16日
テーラー級数
x = a における f(x) のテーラー級数は下記のように定義されます.
(a)
ここで , x0 は a と x の範囲内(b)
は reminder と呼ばれ, f(x) が最低でも n 次の微分係数を持つと想定します.n = 1 の場合は特に平均の法則または平均値の定理と呼ばれ,次のように記述します.
, x0 は a と x の範囲内(c)
(a) に対応した無限級数は f(x) の正規テーラー級数とも呼ばれ,必ずある区間に収束します.仮に がこの区間にあるなら.いくつかの重要なテーラー級数と収束値をその区間とともに示します.
ある形の級数 はしばしばべき級数と呼ばれます.そのようなべき級数はどの区間にも一様収束し,それは収束区間内全体にあります.