Maxima and minima

If for all x such that |x – a| < δ where f(x)f(a) [ or f(x)f(a)], f(a) is a relative maximam [ or relative minimum]. For f(x) to have a relative maximum or minimum at x = a, it must have f'(a) = 0. Then if f”(a) < 0 it is a relative maximum while if f”(a) ≥ 0 it is a relative minimum. Possible points at which f(x) has a relative maxima or minima are obtained by solving f'(x) = 0, i.e. by finding the values of x where the slope of the graph f(x) is equal to zero.

Similarly f(x, y) has a relative maximum or minimum at x = a, y = b if fx(a, b) = 0, fy(a, b) = 0. Thus possible points at which f(x, y) has relative maxima or minima are obtained by solving simultaneously the equations

\displaystyle \frac{\partial f}{\partial x} = 0,\ \frac{\partial f}{\partial y} = 0

Extensions to functions of more than two variables are similar.

極大と極小

 全ての x について |x – a| < δ であり,また f(x)f(a) (または f(x)f(a))である時,f(a) は極大(または極小)であると言います.

 f(x)x = a において極大または極小を持つには f'(a) = 0 でなくてはなりません.もし f”(a) < 0 ならそれは極大であり,一方もし f”(a) > 0 ならそれは極小です.f(x) において極大または極小となる可能性のある点は f'(x) = 0 を解くこと,例えば, f(x) のグラフの 傾き がゼロと等しくなる x の値を見つけることで得られます.

 同様に fx(a, b) = 0, fy(a, b) = 0 ならば f(x, y)x = a, y = b において極大または極小を持ちます.故に f(x, y) f(x, y) で極大または極小をもつ可能性のある点は,同様に次の方程式を解くことで得られます.

\displaystyle \frac{\partial f}{\partial x} = 0,\ \frac{\partial f}{\partial y} = 0

 2 変数以上の関数への拡張も同様です.