Definition of a differential equation
A differential equation is an equation involving derivatives or differentials.
Equations involving only one independent variable are called ordinary differential equations. Equations with two or more independent variables are called partial differential equation.
Order of a differential equation
An equation having a derivative of nth order but no higher is called an nth order differential equation.
Arbitrary constants
An arbitrary constant, often denoted by a letter at the beginning of the alphabet such as A, B, C, c1, c2, etc., may assume values independently of the variables involved. For example in , c1 and c2 are arbitrary constants.
The relation of which can be written actually involves only one arbitrary constant. It’s always assumed that the minimum number of constants is present, i.e. the arbitrary constants are essential.
Solution of a differential equation
A solution of a differential equation is a relation between the variables which is free of derivatives and which satisfies the differential equation identically. is a solution of since by substitution the identity 2 = 2.
A general solution of an nth order differential equation is one involving n (essential) arbitrary constants. Since has two arbitrary constants and satisfies the second order differential equation , it is a general solution of .
A particular solution is a solution obtained from the general solution by assigning specific values to the arbitrary constants. is a particular solution of and is obtained from the general solution by putting c1 = -3 and c2 = 2.
A singular solution is a solution which cannot be obtained from the general solution by specifying values of the arbitrary constants. The general solution of is . However, as seen by substitution another solution is which cannot be obtained from the general solution for any constant c. This second solution is a singular solution.
Differential equation of a family of curves
A general solution of an nth order differential equation has n arbitrary constants (or parameters) and represents geometrically an n parameter family of curves. Conversely a relation with n arbitrary constants (sometimes called a primitive) has associated with it a differential equation of order n (of which it is a general solution) called the differential equation of the family. This differential equation is obtained by differentiating the primitive n times and then eliminating the n arbitrary constants among the n + 1 resulting equations.
日: 2013年12月28日
常微分方程式
微分方程式の定義
微分方程式 とは微分を含む方程式のことです.
ただ一つの独立変数を含む方程式を 常微分方程式 と呼びます.2つ以上の独立変数を含む方程式を 偏微分方程式 と呼びます.
微分方程式の階数
n次の微分を持つ方程式がそれ以上高階の微分を持たない時,n階微分方程式 と言います.
任意定数
任意定数とは,しばしば1文字で記述され A, B, C, c1, c2 などのようにアルファベットで始まりますが,関与する変数とは独立しているのを前提にしています.例えば という関数においては c1 と c2 が任意定数です.
の式の関係は と記述され,事実上ただ一つの任意定数を伴っています.定数の最小数が存在することを前提にしています.すなわち任意定数は 不可欠 です.
微分方程式の解
微分方程式の 解 は変数間の関係であり,微分を持たず同一の微分方程式を満たすものを言います. は の解であり,2 = 2 の同一性を置換したものです.
n 階の微分方程式の 一般解 は唯一の n 個の(不可欠な)任意定数を伴います. が 2 つの任意定数を有し,2 階の微分方程式 を満たすため,それは の一般解です.
特殊解 は一般解の任意定数に特殊な値を割り付けることで得られます. は の特殊解であり,一般解 に c1 = -3 および c2 = 2 を代入することで得られます.
単解 は任意定数の値を特定しても一般解からは得られません. の一般解は です.しかし別の置換法によって見てみると はいかなる定数 c によっても一般解からは得られません.この後者が単解です.
曲線族の微分方程式
n 階の微分方程式の一般解は n 個の任意定数(または変数)をもち,n 変数の曲線族 を幾何学的に表しています.逆に n 個の任意定数との関連は(時に 原始関数 とも呼ばれますが) n 階の微分方程式と関連付けられており(故に一般解なのですが) 族の微分方程式 と呼ばれます.この微分方程式は原始関数を n 回微分することにより得られ,その結果 n + 1 個の方程式の中で n 個の任意定数は消えます.