Vectors and scalars

There are quantities in physics characterized by both magnitude and direction, such as displacement, velocity force and acceleration. To describe such quantities, we introduce the concept of a vector as a directed line segment \overrightarrow{PQ} from one point P called the initial point to another point Q called the terminal point. We denote vectors by bold faced letters or letters with an arrow over them. Thus \overrightarrow{PQ} is denoted by \bold A or \vec{A}. The magnitude or length of the vector is then denoted by |\overrightarrow{PQ}|, \overline{PQ}, |\bold{A}| or |\overrightarrow{A}|.

Other quantities in physics are characterized by magnitude only, such as mass, length and temperature. Such quantities are often called scalars to distinguish them from vectors, but it must be emphasized that apart from units such as feet, degrees, etc., they are nothing more than real numbers. We can thus denote them by ordinary letters as usual.

ベクトルとスカラー

 物理学において量とは,大きさと方向が特徴です.例えば変位,速度,力,加速度など.これらの量を記述するためにベクトルという概念を導入しましょう.有向線分 \overrightarrow{PQ} はある点 P始点 と呼び,もう一方の点 Q終点 と呼びます.ベクトルを太字の文字または上に矢印のついた文字で記述しましょう.ゆえに \overrightarrow{PQ}\bold A または \vec{A} とも記述できます.ゆえにベクトルの 大きさ長さ|\overrightarrow{PQ}|, \overline{PQ}, |\bold{A}| または |\overrightarrow{A}| と記述されます.

 物理学における他の量は大きさだけという特徴があります.例えば質量や長さ,温度など.それらの量はしばしば スカラー と呼ばれ,ベクトルとは区別されます.一つ強調しておかないといけないのは,フィートや度といった単位とは別に,それらは実数に限らないということです.ゆえにそれらを普通の文字で一般的に記述できます.

General linear differential equation of order n

The general linear differential equation of order n has the form

\displaystyle a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = R(x)\ \ \ (1)

A differential equation which cannot be written in this form is called nonlinear.

\displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = \sin x is a second order linear equation. \displaystyle y\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^2 + x^2y = e^{-x} is a second order nonlinear equation.

If R(x), the right side of (1), is replaced by zero the resulting equation is called the complementary, reduced or homogeneous equation. If R(x) ≠ 0, the equation is called the complete or nonhomogeneous equation.

If \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} -2xy =\sin x is the complete equation, then \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = 0 is the corresponding complementary, reduced or homogeneous equation.

If a_0(x)\, \cdots \,a_n(x) are all constants, (1) is said to have constant coefficient, otherwise it is said to have variable coefficients.

n階の一般線形微分方程式

 n 階の一般的な線形微分方程式は次の形を取ります.

\displaystyle a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = R(x)\ \ \ (1)

 この形で書けない微分方程式は非線形と呼ばれます.

\displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = \sin x は 2 階の線形微分方程式です. \displaystyle y\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^2 + x^2y = e^{-x} は 2 階の非線形微分方程式です.

 仮に式 (1) の右辺 R(x) をゼロに置換した場合その方程式は相補縮約または同次方程式と呼ばれます.仮に R(x) ≠ 0 の時,その方程式は 完全 または 非同次 方程式と呼ばれます.

 仮に \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} -2xy =\sin x が完全方程式の時,ゆえに \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = 0 は対応する相補,縮約または同次方程式です.

 仮に a_0(x)\, \cdots \,a_n(x) が全て定数の時, (1) は constant coefficient を持つと言われ,そうでなければ 変数係数 を持つと言われます.