General linear differential equation of order n

The general linear differential equation of order n has the form

\displaystyle a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = R(x)\ \ \ (1)

A differential equation which cannot be written in this form is called nonlinear.

\displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = \sin x is a second order linear equation. \displaystyle y\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^2 + x^2y = e^{-x} is a second order nonlinear equation.

If R(x), the right side of (1), is replaced by zero the resulting equation is called the complementary, reduced or homogeneous equation. If R(x) ≠ 0, the equation is called the complete or nonhomogeneous equation.

If \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} -2xy =\sin x is the complete equation, then \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = 0 is the corresponding complementary, reduced or homogeneous equation.

If a_0(x)\, \cdots \,a_n(x) are all constants, (1) is said to have constant coefficient, otherwise it is said to have variable coefficients.

n階の一般線形微分方程式

 n 階の一般的な線形微分方程式は次の形を取ります.

\displaystyle a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = R(x)\ \ \ (1)

 この形で書けない微分方程式は非線形と呼ばれます.

\displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = \sin x は 2 階の線形微分方程式です. \displaystyle y\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^2 + x^2y = e^{-x} は 2 階の非線形微分方程式です.

 仮に式 (1) の右辺 R(x) をゼロに置換した場合その方程式は相補縮約または同次方程式と呼ばれます.仮に R(x) ≠ 0 の時,その方程式は 完全 または 非同次 方程式と呼ばれます.

 仮に \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} -2xy =\sin x が完全方程式の時,ゆえに \displaystyle x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2xy = 0 は対応する相補,縮約または同次方程式です.

 仮に a_0(x)\, \cdots \,a_n(x) が全て定数の時, (1) は constant coefficient を持つと言われ,そうでなければ 変数係数 を持つと言われます.