Dot or scalar product

The dot or scalar product of two vectors \bold{A} and \bold{B}, denoted by \bold{A}\cdot\bold{B} (read \bold{A} dot \bold{B}) is defined as the product of the magnitude of \bold{A} and \bold{B} and the cosine of the angle between them. In symbols,

\bold{A}\cdot\bold{B} = AB\cos\theta,\ 0\le\theta\le\pi\cdots(4)

Note that \bold{A}\cdot\bold{B} is a scalar and not a vector.

The following laws are valid:

  1. \bold{A}\cdot\bold{B} = \bold{B}\cdot\bold{A}
  2. Communicative Law for Dot Products

  3. \bold{A}\cdot(\bold{B} + \bold{C}) = \bold{A}\cdot\bold{B} + \bold{A}\cdot\bold{C}
  4. Distributive Law

  5. m(\bold{A}\cdot\bold{B}) = (m\bold{A})\cdot\bold{B} = \bold{A}\cdot(m\bold{\bold{B}}) = (\bold{A}\cdot\bold{B})m
  6. where m is a scalar.

  7. \bold{i}\cdot\bold{i} = \bold{j}\cdot\bold{j} = \bold{k}\cdot\bold{k} = 1,\ \bold{i}\cdot\bold{j} = \bold{j}\cdot\bold{k} = \bold{k}\cdot\bold{i} = 0
  8. If \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} and \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k} then
    • \bold{A}\cdot\bold{B} = A_1B_1 + A_2B_2 + A_3B_3
    • \bold{A}\cdot\bold{A} = A^2 = A_1^2 + A_2^2 + A_3^2
    • \bold{B}\cdot\bold{B} = B^2 = B_1^2 + B_2^2 + B_3^2
  9. If \bold{A}\cdot\bold{B} = 0 and \bold{A} and \bold{B} are not null vectors, then \bold{A} and \bold{B} are perpendicular.

ドット積またはスカラー積

 2つのベクトル \bold{A}\bold{B} のドット積またはスカラー積は \bold{A}\cdot\bold{B} と記述し(\bold{A} ドット \bold{B} と読む) \bold{A} および \bold{B} の大きさの積と,両者のなす角のコサインとの積と定義されています.記号では下記のように記します.

\bold{A}\cdot\bold{B} = AB\cos\theta,\ 0\le\theta\le\pi\cdots(4)

 特に \bold{A}\cdot\bold{B} はスカラーであってベクトルではないことに注意する必要があります.

 下記の法則が有効です.

  1. \bold{A}\cdot\bold{B} = \bold{B}\cdot\bold{A}
  2. ドット積の交換法則

  3. \bold{A}\cdot(\bold{B} + \bold{C}) = \bold{A}\cdot\bold{B} + \bold{A}\cdot\bold{C}
  4. 分配法則

  5. m(\bold{A}\cdot\bold{B}) = (m\bold{A})\cdot\bold{B} = \bold{A}\cdot(m\bold{\bold{B}}) = (\bold{A}\cdot\bold{B})m
  6. ここで m はスカラーです.

  7. \bold{i}\cdot\bold{i} = \bold{j}\cdot\bold{j} = \bold{k}\cdot\bold{k} = 1,\ \bold{i}\cdot\bold{j} = \bold{j}\cdot\bold{k} = \bold{k}\cdot\bold{i} = 0
  8. 仮に \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} かつ \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k} であるなら
    • \bold{A}\cdot\bold{B} = A_1B_1 + A_2B_2 + A_3B_3
    • \bold{A}\cdot\bold{A} = A^2 = A_1^2 + A_2^2 + A_3^2
    • \bold{B}\cdot\bold{B} = B^2 = B_1^2 + B_2^2 + B_3^2
  9. 仮に \bold{A}\cdot\bold{B} = 0 であって \bold{A} および \bold{B} が零ベクトルでないなら \bold{A} および \bold{B} は直交します.