Cross or vector product

The cross or vector product of \bold{A} and \bold{B} is a vector \bold{C} = \bold{A} \times \bold{B} (read \bold{A} cross \bold{B}). The magnitude of \bold{A}\times\bold{B} is defined as the product of the magnitudes of \bold{A} and \bold{B} and the sine of the angle between them. The direction of the vector \bold{C} = \bold{A}\times\bold{B} is perpendicular to the plane of \bold{A} and \bold{B} and such that \bold{A}, \bold{B} and \bold{C} form a right-handed system. In symbols,

\bold{A}\times\bold{B} = AB\sin{\theta}\bold{u},\ 0\le\theta\le\pi\cdots(5)

where \bold{u} is a unit vector indicating the direction of \bold{A}\times\bold{B}. If \bold{A} = \bold{B} or if \bold{A} is parallel to \bold{B}, then \sin\theta = 0 and we define \bold{A}\times\bold{B} = 0.

//en.wikipedia.org/wiki/Vector_product
//en.wikipedia.org/wiki/Vector_product

The following laws are valid:

  1.  \bold{A} \times \bold{B} = - \bold{B} \times \bold{A}
  2.  \bold{A} \times (\bold{B} + \bold{C}) = \bold{A}\times\bold{B} + \bold{A} \times \bold{C}
  3.  m( \bold{A} \times \bold{B}) = (m \bold{A}) \times \bold{B} = \bold{A} \times (m \bold{B}) = (\bold{A} \times \bold{B})m
  4.  \bold{i} \times \bold{i} = \bold{j} \times \bold{j} = \bold{k} \times \bold{k} = 0,\ \bold{i} \times \bold{j} = \bold{k},\ \bold{j} \times \bold{k} = \bold{i},\ \bold{k} \times \bold{i} = \bold{j}
  5. If  \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} and  \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k}, then
  6. \displaystyle \bold{A} \times \bold{B} = \left|\begin{array}{ccc} \bold{i} & \bold{j} & \bold{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{array}\right| = \left|\begin{array}{cc} A_2 & A_3 \\ B_2 & B_3 \end{array}\right| \bold{i} - \left|\begin{array}{cc} A_1 & A_3 \\ B_1 & B_3 \end{array}\right| \bold{j} + \left|\begin{array}{cc} A_1 & A_2 \\ B_1 & B_2 \end{array}\right| \bold{k}
  7.  |\bold{A} \times \bold{B}| is the area of a parallelogram with sides \bold{A} and \bold{B}.
  8. If  \bold{A} \times \bold{B} = 0 and \bold{A} and \bold{B} are not null vectors, then \bold{A} and \bold{B} are parallel.

Note that communicative law for cross products is failed.

クロス積またはベクトル積

 ベクトル \bold{A} とベクトル \bold{B} とのクロス積またはベクトル積は \bold{C} = \bold{A} \times \bold{B} と記述し \bold{A} クロス \bold{B} と読みます.\bold{A}\times\bold{B} の大きさは \bold{A} および \bold{B} の大きさと両者のなす角のサインとの積と定義されます.ベクトル \bold{C} = \bold{A}\times\bold{B} の方向は \bold{A} および \bold{B} のなす平面と垂直であり,そのようなベクトル \bold{A}, \bold{B} および \bold{C} は右手系を形成します.記号では下記のように記します.

\bold{A}\times\bold{B} = AB\sin{\theta}\bold{u},\ 0\le\theta\le\pi\cdots(5)

ここで \bold{u}\bold{A}\times\bold{B} の方向を指す単位ベクトルです.仮に \bold{A} = \bold{B} または \bold{A}\bold{B} に対して平行の場合, \sin\theta = 0 となって \bold{A}\times\bold{B} = 0 と定義できます.

//en.wikipedia.org/wiki/Vector_product
//en.wikipedia.org/wiki/Vector_product

 下記の法則が有効です.

  1.  \bold{A} \times \bold{B} = - \bold{B} \times \bold{A}
  2.  \bold{A} \times (\bold{B} + \bold{C}) = \bold{A}\times\bold{B} + \bold{A} \times \bold{C}
  3.  m( \bold{A} \times \bold{B}) = (m \bold{A}) \times \bold{B} = \bold{A} \times (m \bold{B}) = (\bold{A} \times \bold{B})m
  4.  \bold{i} \times \bold{i} = \bold{j} \times \bold{j} = \bold{k} \times \bold{k} = 0,\ \bold{i} \times \bold{j} = \bold{k},\ \bold{j} \times \bold{k} = \bold{i},\ \bold{k} \times \bold{i} = \bold{j}
  5. 仮に  \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} また  \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k} の場合,
  6. \displaystyle \bold{A} \times \bold{B} = \left|\begin{array}{ccc} \bold{i} & \bold{j} & \bold{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{array}\right| = \left|\begin{array}{cc} A_2 & A_3 \\ B_2 & B_3 \end{array}\right| \bold{i} - \left|\begin{array}{cc} A_1 & A_3 \\ B_1 & B_3 \end{array}\right| \bold{j} + \left|\begin{array}{cc} A_1 & A_2 \\ B_1 & B_2 \end{array}\right| \bold{k}
  7.  |\bold{A} \times \bold{B}| \bold{A} および \bold{B} が辺となる平行四辺形の面積を表します.
  8. 仮に  \bold{A} \times \bold{B} = 0 であって \bold{A} および \bold{B} が零ベクトルでない場合, \bold{A} および \bold{B} は平行となります.

 クロス積においては交換法則が成り立たないことに注意が必要です.