If
is a scalar function and
a vector function of orthogonal curvilinear coordinates
,
,
, we have the following results.
1.
2.
3.
4.
These reduce to the usual expressions in rectangular coordinates if we replace
by
, in which case
,
and
are replaced by
,
and
and
.
日: 2014年4月15日
直交曲線座標における勾配,発散,回転およびラプラシアン
仮に が一つのスカラー関数であり,また
が直交曲線座標
,
,
のベクトル関数の時,下記の結果を得ます.
1. 
2. ![\displaystyle \nabla\cdot\bold{A} = div\bold{A} = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}(h_2h_3A_1) + \frac{\partial}{\partial u_2}(h_3h_1A_2) + \frac{\partial}{\partial u_3}(h_1h_2A_3) \right] \displaystyle \nabla\cdot\bold{A} = div\bold{A} = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}(h_2h_3A_1) + \frac{\partial}{\partial u_2}(h_3h_1A_2) + \frac{\partial}{\partial u_3}(h_1h_2A_3) \right]](https://s0.wp.com/latex.php?latex=%5Cdisplaystyle+%5Cnabla%5Ccdot%5Cbold%7BA%7D+%3D+div%5Cbold%7BA%7D+%3D+%5Cfrac%7B1%7D%7Bh_1h_2h_3%7D%5Cleft%5B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_1%7D%28h_2h_3A_1%29+%2B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_2%7D%28h_3h_1A_2%29+%2B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_3%7D%28h_1h_2A_3%29+%5Cright%5D&bg=T&fg=000000&s=0)
3. 
4. ![\displaystyle \nabla^2\Phi = Laplacian\ of\ \Phi\\ = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}\left( \frac{h_2h_3}{h_1}\frac{\partial\Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2}\left( \frac{h_3h_1}{h_2}\frac{\partial\Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3}\left( \frac{h_1h_2}{h_3}\frac{\partial\Phi}{\partial u_3} \right) \right] \displaystyle \nabla^2\Phi = Laplacian\ of\ \Phi\\ = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}\left( \frac{h_2h_3}{h_1}\frac{\partial\Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2}\left( \frac{h_3h_1}{h_2}\frac{\partial\Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3}\left( \frac{h_1h_2}{h_3}\frac{\partial\Phi}{\partial u_3} \right) \right]](https://s0.wp.com/latex.php?latex=%5Cdisplaystyle+%5Cnabla%5E2%5CPhi+%3D+Laplacian%5C+of%5C+%5CPhi%5C%5C+++%3D+%5Cfrac%7B1%7D%7Bh_1h_2h_3%7D%5Cleft%5B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_1%7D%5Cleft%28+%5Cfrac%7Bh_2h_3%7D%7Bh_1%7D%5Cfrac%7B%5Cpartial%5CPhi%7D%7B%5Cpartial+u_1%7D+%5Cright%29+%2B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_2%7D%5Cleft%28+%5Cfrac%7Bh_3h_1%7D%7Bh_2%7D%5Cfrac%7B%5Cpartial%5CPhi%7D%7B%5Cpartial+u_2%7D+%5Cright%29+%2B+%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial+u_3%7D%5Cleft%28+%5Cfrac%7Bh_1h_2%7D%7Bh_3%7D%5Cfrac%7B%5Cpartial%5CPhi%7D%7B%5Cpartial+u_3%7D+%5Cright%29+%5Cright%5D&bg=T&fg=000000&s=0)
仮に を
で置換すると,以下の場合,つまり
,
および
が
,
および
で置換され,
で置換されるような場合などには,これらの結果は直交座標系の通常の式に短縮されます.