Definition of a matrix

A matrix of order m × n, or m by n matrix, is a rectangular array of numbers having m rows and n columns. It can be written in the form

 A = \left( \begin{array}{ccccc}  a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\  a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots & \cdots \\  a_{m1} & a_{m2} & a_{3m} & \cdots & a_{mn} \end{array} \right)\cdots(1)

Each number a_{jk} in this matrix is called an element. The subscripts j and k indicate respectively the row and column of the matrix in which the element appears.

We shall often denote a matrix by a letter, such as A in (1), or by the symbol (a_{jk}) which shows a representative element.

A matrix having only one row is called a row matrix or row vector while a matrix having only one column is called a column matrix or column vector. If the number of rows m and columns n are equal the matrix is called a square matrix of order n \times n or briefly n. A matrix is said to be a real matrix or complex matrix according as its elements are real or complex numbers.

行列の定義

 m × n 行列 または mn 行列m 行および n 列を有する長方形の配列です.下記の形式で記述できます.

 A = \left( \begin{array}{ccccc}  a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\  a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots & \cdots \\  a_{m1} & a_{m2} & a_{3m} & \cdots & a_{mn} \end{array} \right)\cdots(1)

 この配列内のそれぞれの数 a_{jk}要素 と呼びます.添字の j および k は,要素の出現する行列における行と列をそれぞれ示しています.

 行列はしばしば (1) における A のような 1 文字や,代表的な要素を示す記号 (a_{jk}) で記述します.

 ただ 1 行からなる行列を row matrix または 行ベクトル と呼び,ただ 1 列からなる行列を column matrix または 列ベクトル と呼びます.仮に行数 m と列数が n が等しいならその行列を次数 n \times n または単に n 次の 正方行列 と呼びます.行列はその要素が実数か複素数かによって 実行列 または 複素行列 と呼びます.