Systems of linear equations

A set of equations having the form

 \left. \begin{array}{ccc}  a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & r_1 \\  a_{21}x_2 + a_{22}x_2 + \cdots + a_{2n}x_n & = & r_2 \\  \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots & \cdots & \cdots \\  a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & r_n   \end{array} \right\}\cdots(16)

is called a system of m linear equations in the n unknowns x_1,\ x_2,\ \cdots,\ x_n. If r_1,\ r_2,\ \cdots,\ r_n are all zero the system is called homogeneous. If they are not all zero it is called non-homogeneous. Any set of numbers x_1,\ x_2,\ \cdots,\ x_n which satisfies (16) is called a solution of the system.

In the matrix form (16) can be written

\displaystyle \left( \begin{array}{cccc}  a_{11} & a_{12} & \cdots & a_{1n} \\  a_{21} & a_{22} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots \\  a_{m1} & a_{m2} & \cdots & a_{mn}     \end{array} \right)  \left( \begin{array}{c} x_1 \\ x_2 \\ \cdots \\ x_n \end{array} \right) =   \left( \begin{array}{c} r_1 \\ r_2 \\ \cdots \\ r_n \end{array} \right) \cdots (17)

or more briefly  AX = R \cdots (18)

where A, X, R represent the corresponding matrices in (17).

連立一次方程式

 以下の形式を持つ方程式の集合があるとします.

 \left. \begin{array}{ccc}  a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & r_1 \\  a_{21}x_2 + a_{22}x_2 + \cdots + a_{2n}x_n & = & r_2 \\  \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots & \cdots & \cdots \\  a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & r_n   \end{array} \right\}\cdots(16)

これらは n 個の未知数 x_1,\ x_2,\ \cdots,\ x_n についての m 個の連立方程式 と呼びます.仮に r_1,\ r_2,\ \cdots,\ r_n がすべてゼロならその連立方程式は 斉次 と呼びます.仮にそれらがすべてゼロでないなら 非斉次 と呼びます.(16) を満たすいかなる数 x_1,\ x_2,\ \cdots,\ x_n の集合も連立方程式の と呼びます.

行列においては (16) の形式は以下のように記述できます.

\displaystyle \left( \begin{array}{cccc}  a_{11} & a_{12} & \cdots & a_{1n} \\  a_{21} & a_{22} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots \\  a_{m1} & a_{m2} & \cdots & a_{mn}     \end{array} \right)  \left( \begin{array}{c} x_1 \\ x_2 \\ \cdots \\ x_n \end{array} \right) =   \left( \begin{array}{c} r_1 \\ r_2 \\ \cdots \\ r_n \end{array} \right) \cdots (17)

または短縮して  AX = R \cdots (18)

ここで A, X, R はそれぞれ (17) における対応する行列を表現しています.