In systematic review or meta-analyses, multiple cohort studies and randomized controlled studies are integrated and conducted more precise analysis. However, it’s impossible to avoid publication bias because non-significant studies are less likely to be posted and published. If systematic reviews or meta-analyses with publication bias were conducted, incorrect treatment would be accepted. Funnel plot is one of methods to assess whether there is publication bias or not.
Scatter plot inverse of standard error on vertical axis against odds ratio or hazard ratio on horizontal axis. If there was no publication bias, funnel plot would be symmetrical. However, if there was publication bias, funnel plot would be asymmetrical.
It is required to calculate standard error in order to draw funnel plot, if point estimated of the effect size and its 95 % confidence interval are known, they are described in most of systematic reviews and meta-analysis, you can find standard error as following;
Bias in meta-analysis detected by a simple, graphical test
Matthias Egger, George Davey Smith, Martin Schneider, Christoph Minder
Abstract
Objective
Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses.
Design
Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews.
Main outcome measure
Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision.
Results
In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias.
Conclusions
A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution.
Key messages
Systematic reviews of randomised trials are the best strategy for appraising evidences; however, the findings of some meta-analyses were later contradicted by large trials
Funnel plots, plots of the trials’ effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases
Funnel plot asymmetry, measured by regression analyses, predicts discordance of results when meta-analyses are compared with single large trials
Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from Cochrane Database of Systematic Reviews
Critical examination of systematic reviews for publication and related biases should be considered a routine procedure
我々は線形回帰法を用いてファンネルプロットの非対称を計測し,オッズ比の自然対数スケールを用いた.現在の状況では回帰直線が原点を通るという制約を課されないにも関わらず,これは Galbraith の放射状プロットの回帰分析に対応している.標準正規偏差はオッズ比をそれ自身の標準誤差で除したと定義されるが,推定精度に対して回帰し,後者は標準誤差の逆数として定義される(回帰式は次のように定義される:SND = a + b x precision).精度が主にサンプルサイズに依存するように,小規模試験は x 軸上では 0 に近づく.小規模試験はオッズ比の統一値からの差異を提供するが,標準誤差が大きくなるために結果として標準正規偏差は 0 点に近くなる.小規模試験は両軸共に 0 点,つまり原点に近づく筈である.逆に大規模試験は正確な推定値をもたらし,もし治療が有効なら大きな標準正規偏差をもたらす.試験の集合が同質ならその点は選択バイアスによって歪まず,標準正規偏差がゼロとなる (a = 0) 原点を通る直線上に分布するはずであり,傾き b は効果のサイズと方向を示している.この状況は左右対称のファンネルプロットに対応する.
仮に非対称が存在する場合,系統的大規模試験の結果とは異なる結果が小規模試験で出るように,回帰直線は原点を通らない筈である.切片 a は非対称性の計測を提供する.ゼロからの偏差が大きいほど非対称がより顕著となる.小規模試験がより大きく強固な効果を有するなら,対数軸の原点より下に回帰直線が来るようになるはずである.それ故,陰性の結果は小規模試験においては大規模試験よりもより顕著な利益を示唆するはずである.ある状況では(例えばいくつかの小規模試験と1つの大規模試験が存在するような場合),推定効果の分散の逆数により解析に加重することによって検出力が上昇する.我々は加重した場合としない場合の両者について検討し,解析の結果を用いてより 0 からの偏差が大きな切片を求めた.
異質性のすべての検査とは対照的に,ファンネルプロットの非対称性テストは異質性を特異的に評価し,この状況ではより強力なテストを提供する.しかしながら,どんな異質性の解析もメタアナリシスに含まれる試験の数に依存しており,それらは一般に小規模で,試験の統計学的検出力に限界がある.それ故我々は非対称性の根拠を P < 0.1 に設定した.そして切片を 90 % 信頼区間で表現した.同じ有意水準をメタアナリシスにおける異質性の以前の解析にも用いた.
Systematic reviews of randomised trials are the best strategy for appraising evidences; however, the findings of some meta-analyses were later contradicted by large trials
Funnel plots, plots of the trials’ effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases
Funnel plot asymmetry, measured by regression analyses, predicts discordance of results when meta-analyses are compared with single large trials
Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from Cochrane Database of Systematic Reviews
Critical examination of systematic reviews for publication and related biases should be considered a routine procedure