Let be a two-sided surface having projection on the plane as in the adjoining Fig. 6-3. Assume that an equation for is , where is single-valued and continuous for all and in . Divide into subregions of area , and erect a vertical column on each of these subregions to intersect in an area .
Let be single-valued and continuous at all points of . Form the sum
where is some point of . If the limit of this sum as in such a way that each exists, the resulting limit is called the surface integral of over and is designated by
Since approximately, where is the angle between the normal line to and the positive axis, the limit of the sum (29) can be written
The quantity is given by
Then assuming that has continuous (or sectionally continuous) derivatives in , (31) can be written in rectangular form as
In case the equation for is given as , (33) can also be written
The results (33) or (34) can be used to evaluate (30).
In the above we have assumed that is such that any line parallel to the axis intersects in only one point. In case is not of this type, we can usually subdivide into surfaces which are of this type. Then the surface integral over is defined as the sum of the surface integrals over
The results stated hold when is projected on to a region of the plane. In some cases it is better to project on to the or planes. For such cases (30) can be evaluated by appropriately modifying (33) and (34).