Probability density function, expected value and variance of each probability distribution

Pocket

I’d like to summarize probability density function (f(x)), expected value (E(X)) and variance (V(X)) of following probability distribution.

Supergeometric distribution  
\displaystyle f(x) = \frac{{}_{M}C_x\cdot{}_{N-M}C_{n-x}}{{}_{N}C_{n}} \displaystyle x = Max(0, n - (N - M)), \cdots, Min(n, M)
\displaystyle E(X) = np \displaystyle p = \frac{M}{N}
\displaystyle V(X) = np(1 - p)\frac{N - n}{N - 1}  
Binomial distribution  
\displaystyle f(x) = {}_{n}C_{x}p^{x}(1 - p)^{n - x} \displaystyle x = 0, 1, \cdots, n
\displaystyle E(X) = np \displaystyle 0 < p < 1[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle V(X) = np(1 - p)  
Poisson distribution  
\displaystyle f(x) = \frac{\exp(- \lambda)\cdot\lambda^x}{x!} \displaystyle x = 0, 1, 2, \cdots
\displaystyle E(X) = \lambda \lambda = np
\displaystyle V(X) = \lambda
Geometric distribution  
\displaystyle f(x) = p(1 - p)^{x - 1} \displaystyle x = 1, 2, 3, \cdots
\displaystyle E(X) = \frac{1}{p} \displaystyle 0 < p < 1[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle V(X) = \frac{1 - p}{p^2}  
Negative binomial distribution  
\displaystyle f(x) = {}_{k + x - 1}C_{x}p^{k}(1-p)^{x} \displaystyle x = 0, 1, 2, \cdots
\displaystyle E(X) = \frac{k(1 - p)}{p}  
\displaystyle V(X) = \frac{k(1 - p)}{p^2}  
Normal distribution  
\displaystyle f(x) = \frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x - m)^2}{2\sigma^2}\right) \displaystyle - \infty < x < \infty[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle E(X) = m  
\displaystyle V(X) = \sigma^2 \displaystyle \sigma > 0
Exponential distribution  
\displaystyle f(x) = \lambda\exp(-\lambda x) \displaystyle x \ge 0
\displaystyle f(x) = 0 \displaystyle x < 0[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle E(X) = \frac{1}{\lambda}  
\displaystyle V(X) = \frac{1}{\lambda^2}  
Gamma distribution  
\displaystyle f(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha - 1}\exp(- \lambda x) \displaystyle x \ge 0
\displaystyle f(x) = 0 \displaystyle x < 0[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle E(X) = \frac{\alpha}{\lambda} \displaystyle \lambda, \alpha > 0
\displaystyle V(X) = \frac{\alpha}{\lambda^2}  
Beta distribution  
\displaystyle f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)} \displaystyle 0 < x < 1[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle f(x) = 0 \displaystyle x \le 0, 1 \le x
\displaystyle E(X) = \frac{\alpha}{\alpha + \beta}  
\displaystyle V(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}  
Cauchy distribution  
\displaystyle f(x) = \frac{\alpha}{\pi(\alpha^2 + (x - \lambda)^2)} \displaystyle \alpha > 0
Log-normal distribution  
\displaystyle f(x) = \frac{1}{\sqrt{2\pi}\sigma x}\exp\left(-\frac{(\log(x) - m)^2}{2\sigma^2}\right) \displaystyle x > 0
\displaystyle f(x) = 0 \displaystyle x \le 0
\displaystyle E(X) = \exp\left(m + \frac{\sigma^2}{2}\right) \displaystyle \sigma > 0
\displaystyle V(X) = \exp[2m + \sigma^2](\exp[\sigma^2] - 1)  
Pareto distribution  
\displaystyle f(x) = \frac{x_0^\alpha}{x^{\alpha + 1}} \displaystyle x \ge x_0
\displaystyle f(x) = 0 \displaystyle x < 0[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle E(X) = \frac{ax_0}{a - 1} \displaystyle a > 1
\displaystyle V(X) = \frac{ax_0^2}{a - 2} - \left(\frac{ax_0}{a - 1}\right)^2 \displaystyle a > 2
Weibull distribution  
\displaystyle f(x) = \frac{\gamma x^{\gamma - 1}}{\lambda^b}\exp\left[-\left(\frac{x}{y}\right)^\gamma\right] \displaystyle x \ge 0
\displaystyle f(x) = 0 \displaystyle x < 0[/latex]</td>  </tr>  <tr>  <td><img src='https://s0.wp.com/latex.php?latex&bg=T&fg=000000&s=0' alt='' title='' class='latex' />\displaystyle E(X) = \lambda\Gamma\left(1 + \frac{1}{\gamma}\right) \displaystyle \lambda > 0
\displaystyle V(X) = \lambda^2\left[\Gamma\left(2 + \frac{1}{\gamma}\right) - \left(\Gamma\left(1 + \frac{1}{\gamma}\right)\right)^2\right] \displaystyle \gamma > 0

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です