一次方程式と行列式

Pocket

\displaystyle a_1x + b_1y = c_1\\\vspace{0.2 in}  a_2x + b_2y = c_2\ \cdots(1)

 これらは xy 平面における 2 本の直線を示しており,一般に (x, y) 座標で交わる 1 点において同時に解が得られます.

\displaystyle x = \frac{c_1b_2 - b_1c_2}{a_1b_2 - b_1a_2},\ y = \frac{a_1c_2 - c_1a_2}{a_1b_2 - b_1a_2}\ \cdots(2)

 これを行列式で表現するのは便利です.

\displaystyle x = \frac{\left|\begin{array}{cc}c_1 & b_1 \\ c_2 & b_2\end{array}\right|}{\left|\begin{array}{cc}a_1 & b_1 \\ a_2 & b_2\end{array}\right|},\ y = \frac{\left|\begin{array}{cc}a_1 & c_1 \\ a_2 & c_2\end{array}\right|}{\left|\begin{array}{cc}a_1 & b_1 \\ a_2 & b_2 \end{array}\right|}\ \cdots(3)

 2 次の行列式は次のように定義します.

\displaystyle \left|\begin{array}{cc}a & b \\ c & d \end{array}\right| = ad - bc\ \cdots(4)

 強調すべきことですが,(3) で記述した x と y の分母は (1) の x と y の係数を含む行列式です.x の分子は分母の 1 列目を (1) の右側の c1, c2 の定数で置換して得られます.同様に y の分子は c1, c2 で 2 列目を置換して得られます.この処理はしばしば Crame’s rule と呼ばれます.(3) の分母がゼロの場合は (1) で示される 2 行は1点で交差せず,一致するか平行であるかです.

 この考えは容易に拡張できます.次の方程式を考えてみましょう.

\displaystyle   a_1x + b_1y + c_1z = d_1\\\vspace{0.2 in}  a_2x + b_2y + c_2z = d_2\ \cdots(5)\\\vspace{0.2 in}  a_3x + b_3y + c_3z = d_3

3行を示します.これらが 1 点で交わる場合,この点の (x, y, z) 座標は Cramer’s rule から得られます.

\displaystyle  x = \frac{\left|\begin{array}{ccc}d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3\end{array}\right|}{\left|\begin{array}{ccc}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|},\ y = \frac{\left|\begin{array}{ccc}a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3\end{array}\right|}{\left|\begin{array}{ccc}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|},\ z = \frac{\left|\begin{array}{ccc}a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3\end{array}\right|}{\left|\begin{array}{ccc}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|}\ \cdots(6)

 3 次の行列式は次のように定義されます.

\displaystyle \left|\begin{array}{ccc}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\a_3 & b_3 & c_3\end{array}\right| = a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - (b_1a_2c_3 + a_1c_2b_3 + c_1b_2a_3)\ \cdots(7)

 この行列式は 2 次の行列式の面で次のように評価されます.

\displaystyle a_1\left|\begin{array}{cc}b_2 & c_2 \\ b_3 & c_3\end{array}\right| - b_1\left|\begin{array}{cc}a_2 & c_2 \\ a_3 & c_3\end{array}\right| + c_1\left|\begin{array}{cc}a_2 & b_2 \\ a_3 & b_3\end{array}\right|\ \cdots(8)

 ここで強調しておきたいことは,a1, b1, c1 は 1 行目の要素であり,対応する 2 次の行列式は 3 次の行列式からその要素が現れる行と列を除去して得られます.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です