Maxima and minima

Pocket

If for all x such that |x – a| δ where f(x)f(a) [ or f(x)f(a)], f(a) is a relative maximam [ or relative minimum]. For f(x) to have a relative maximum or minimum at x = a, it must have f'(a) = 0. Then if f”(a) f”(a) ≥ 0 it is a relative minimum. Possible points at which f(x) has a relative maxima or minima are obtained by solving f'(x) = 0, i.e. by finding the values of x where the slope of the graph f(x) is equal to zero.

Similarly f(x, y) has a relative maximum or minimum at x = a, y = b if fx(a, b) = 0, fy(a, b) = 0. Thus possible points at which f(x, y) has relative maxima or minima are obtained by solving simultaneously the equations

\displaystyle \frac{\partial f}{\partial x} = 0,\ \frac{\partial f}{\partial y} = 0

Extensions to functions of more than two variables are similar.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です