Laws of vector algebra and unit vectors

Pocket

Laws of vector algebra

If \bold{A}, \bold{B} and \bold{C} are vectors, and m and n are scalars, then

\begin{array}{lll}1. & \bold{A} + \bold{B} = \bold{B} + \bold{A} & Communicative Law for Addition\\  2. & \bold{A} + (\bold{B} + \bold{C}) = (\bold{A} + \bold{B}) + \bold{C} & Associative Law for Addition\\  3. & m(n\bold{A}) = (mn)\bold{A} = n(m\bold{A}) & Associative Law for Multiplication\\  4. & (m + n)\bold{A} = m\bold{A} + n\bold{A} & Distributive Law\\  5. & m(\bold{A} + \bold{B}) = m\bold{A} + m\bold{B} & Distributive Law  \end{array}

Note that in these laws only multiplication of a vector by one or more scalars is defined.

Unit vectors

Unit vectors are vectors having unit length. If \bold{A} is any vector with length A > 0, then \bold{A}/A is a unit vector, denoted by \bold{a}, having the same direction as \bold{A}.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です