Components of a vector

Pocket

Any vector \bold{A} in 3 dimensions can be represented with initial point at the origin O of a rectangular coordinate system. Let (A_1, A_2, A_3) be the rectangular coordinates of the terminal point of vector \bold{A} with initial point at O. The vectors A_1\bold{i}, A_2\bold{j} and A_3\bold{k} are called the rectangular component vectors, or simply component vectors, of \bold{A} in the x, y and z directions respectively. A_1, A_2 and A_3 are called the rectangular components, or simply components, of \bold{A} in the x, y and z directions respectively.

The sum or resultant of A_1\bold{i}, A_2\bold{j} and A_3\bold{k} is the vector \bold{A}, so that we can write

\bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k}\cdots(1)

The magnitude of \bold{A} is

A = |\bold{A}| = \sqrt{A_1^2 + A_2^2 + A_3^2}\cdots(2)

In particular, the position vector or radius vector \bold{r} from O to the point (x, y, z) is written

\bold{r} = x\bold{i} + y\bold{j} + z\bold{k}\cdots(3)

and has magnitude r = |\bold{r}| = \sqrt{x^2 + y^2 + z^2}.

Vector

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です