Cross or vector product

Pocket

The cross or vector product of \bold{A} and \bold{B} is a vector \bold{C} = \bold{A} \times \bold{B} (read \bold{A} cross \bold{B}). The magnitude of \bold{A}\times\bold{B} is defined as the product of the magnitudes of \bold{A} and \bold{B} and the sine of the angle between them. The direction of the vector \bold{C} = \bold{A}\times\bold{B} is perpendicular to the plane of \bold{A} and \bold{B} and such that \bold{A}, \bold{B} and \bold{C} form a right-handed system. In symbols,

\bold{A}\times\bold{B} = AB\sin{\theta}\bold{u},\ 0\le\theta\le\pi\cdots(5)

where \bold{u} is a unit vector indicating the direction of \bold{A}\times\bold{B}. If \bold{A} = \bold{B} or if \bold{A} is parallel to \bold{B}, then \sin\theta = 0 and we define \bold{A}\times\bold{B} = 0.

//en.wikipedia.org/wiki/Vector_product
//en.wikipedia.org/wiki/Vector_product

The following laws are valid:

  1.  \bold{A} \times \bold{B} = - \bold{B} \times \bold{A}
  2.  \bold{A} \times (\bold{B} + \bold{C}) = \bold{A}\times\bold{B} + \bold{A} \times \bold{C}
  3.  m( \bold{A} \times \bold{B}) = (m \bold{A}) \times \bold{B} = \bold{A} \times (m \bold{B}) = (\bold{A} \times \bold{B})m
  4.  \bold{i} \times \bold{i} = \bold{j} \times \bold{j} = \bold{k} \times \bold{k} = 0,\ \bold{i} \times \bold{j} = \bold{k},\ \bold{j} \times \bold{k} = \bold{i},\ \bold{k} \times \bold{i} = \bold{j}
  5. If  \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k} and  \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k}, then
  6. \displaystyle \bold{A} \times \bold{B} = \left|\begin{array}{ccc} \bold{i} & \bold{j} & \bold{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{array}\right| = \left|\begin{array}{cc} A_2 & A_3 \\ B_2 & B_3 \end{array}\right| \bold{i} - \left|\begin{array}{cc} A_1 & A_3 \\ B_1 & B_3 \end{array}\right| \bold{j} + \left|\begin{array}{cc} A_1 & A_2 \\ B_1 & B_2 \end{array}\right| \bold{k}
  7.  |\bold{A} \times \bold{B}| is the area of a parallelogram with sides \bold{A} and \bold{B}.
  8. If  \bold{A} \times \bold{B} = 0 and \bold{A} and \bold{B} are not null vectors, then \bold{A} and \bold{B} are parallel.

Note that communicative law for cross products is failed.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です