Triple products

Pocket

Dot and cross multiplication of three vectors \bold{A}, \bold{B} and \bold{C} may produce meaningful products of the form (\bold{A}\cdot\bold{B})\bold{C}, \bold{A}\cdot(\bold{B}\times\bold{C}) and \bold{A}\times(\bold{B}\times\bold{C}). The following laws are valid:

  1. (\bold{A}\cdot\bold{B})\bold{C} \ne \bold{A}(\bold{B}\cdot\bold{C}) in general
  2. \bold{A}\cdot(\bold{B}\times\bold{C}) = \bold{B}\cdot(\bold{C}\times\bold{A}) = \bold{C}\cdot(\bold{A}\times\bold{B}) is volume of a parallelepiped having \bold{A}, \bold{B}, and \bold{C} as edges, or the negative of this volume according as \bold{A}, \bold{B} and \bold{C} do or do not form a right-handed system. If \bold{A} = A_1\bold{i} + A_2\bold{j} + A_3\bold{k}, \bold{B} = B_1\bold{i} + B_2\bold{j} + B_3\bold{k} and \bold{C} = C_1\bold{i} + C_2\bold{j} + C_3\bold{k}, then
    \displaystyle \bold{A}\cdot(\bold{B}\times\bold{C}) = \left|\begin{array}{ccc} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{array}\right|\cdots (6)
  3. \bold{A} \times (\bold{B} \times \bold{C}) \ne (\bold{A} \times \bold{B}) \times \bold{C}
  4. \bold{A} \times (\bold{B} \times \bold{C}) = (\bold{A} \cdot \bold{C})\bold{B} - (\bold{A} \cdot \bold{B})\bold{C}\\  (\bold{A} \times \bold{\bold{B}}) \times \bold{C} = (\bold{A} \cdot \bold{C})\bold{B} - (\bold{B} \cdot \bold{C})\bold{A}

The product \bold{A} \cdot (\bold{B} \times \bold{C}) is sometimes called the scalar triple product or box product and may be denoted by \left[\bold{ABC}\right]. The product \bold{A} \times (\bold{B} \times \bold{C}) is called the vector triple product.

In \bold{A} \cdot (\bold{B} \times \bold{C}) parentheses are sometimes omitted and we write \bold{A} \cdot \bold{B} \times \bold{C}. However, parentheses must be used in \bold{A} \times (\bold{B} \times \bold{C}). Note that \bold{A} \cdot (\bold{B} \times \bold{C}) = (\bold{A} \times \bold{B}) \cdot \bold{C}. This is often expressed by stating that in a scalar triple product the dot and the cross can be interchanged without affecting the result.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です