Vector functions

Pocket

If corresponding to each value of a scalar u we associate a vector \bold{A}, then \bold{A} is called a function of u denoted by \bold{A}(u). In there dimensions we can write \bold{A}(u) = A_1(u)\bold{i} + A_2(u)\bold{j} + A_3(u)\bold{k}.

The function concept is easily extended. Thus if to each point (x, y, z) there corresponds a vector \bold{A}, then \bold{A} is a function of (x, y, z), indicated by \bold{A} = A_1(x, y, z)\bold{i} + A_2(x, y, z)\bold{j} + A_3(x, y, z)\bold{k}.

We sometimes say that a vector function \bold{A}(x, y, z) defines a vector field since it associates a vector with each point of a region. Similarly \phi(x, y, z) defines a scalar field since it associates a scalar with each point of a region.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です