Limits, continuity and derivatives of vector functions

Pocket

Limits, continuity and derivatives of vector functions follow rules similar to those for scalar functions already considered. The following statements show the analogy which exists.

  1. The vector function \bold{A}(u) is said to be continuous at u_0 if given any positive number \varepsilon, we can find some positive number \delta such that \left|\bold{A}(u) - \bold{A}(u_0)\right| < \varepsilon[/latex] whenever [latex]\left|u - u_0\right| < \delta[/latex]. This is equivalent to the statement [latex]\lim\limits_{u \rightarrow u_0}\bold{A}(u) = \bold{A}(u_0)[/latex]. </li> <li>The derivative of [latex]\bold{A}(u) is defined as
    \displaystyle \frac{d\bold{A}}{du} = \lim\limits_{\Delta{u} \rightarrow 0}\frac{\bold{A}(u + \Delta {u}) - \bold{A}(u)}{\Delta{u}}\cdots (7)
    provided this limit exists. In case \bold{A}(u) = A_1(u)\bold{i} + A_2(u)\bold{j} + A_3(u)\bold{k}; then
    \displaystyle \frac{d\bold{A}}{du} = \frac{dA_1}{du}\bold{i} + \frac{dA_2}{du}\bold{j} + \frac{dA_3}{du}\bold{k}
    Higher derivatives such as d^2\bold{A}/du^2, etc., can be similarly defined.
  2. If \bold{A}(x, y, z) = A_1(x, y, z)\bold{i} + A_2(x, y, z)\bold{j} + A_3(x, y, z)\bold{k}, then
    \displaystyle d\bold{A} = \frac{\partial\bold{A}}{\partial x}dx + \frac{\partial\bold{A}}{\partial y}dy + \frac{\partial\bold{A}}{\partial z}dz\cdots(8)
    is the differential of \bold{A}.
  3. Derivatives of products obey rules similar to those for scalar functions. However, when cross products are involved the order may be important. Some examples are:
    \displaystyle (a)\ \frac{d}{du}(\phi\bold{A}) = \phi\frac{d\bold{A}}{du} + \frac{d\phi}{du}\bold{A}
    \displaystyle (b)\ \frac{\partial}{\partial y}(\bold{A} \cdot \bold{B}) = \bold{A} \cdot \frac{\partial \bold{B}}{\partial y} + \frac{\partial\bold{A}}{\partial y} \cdot \bold{B}
    \displaystyle (c)\ \frac{\partial}{\partial z}(\bold{A} \times \bold{B}) = \bold{A} \times \frac{\partial\bold{B}}{\partial z} + \frac{\partial\bold{A}}{\partial z} \times \bold{B}

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です