Formulas involving ∇

Pocket

If the partial derivatives of \bold{A}, \bold{B}, U and V are assumed to exist, then

  1. \displaystyle \nabla(U + V) = \nabla U + \nabla V or grad(U + V) = grad U + grad V
  2. \displaystyle \nabla\cdot(\bold{A} + \bold{B}) = \nabla\cdot\bold{A} + \nabla\cdot\bold{B} or div(\bold{A} + \bold{B}) = div\bold{A} + div\bold{B}
  3. \displaystyle \nabla\times (\bold{A} + \bold{B}) = \nabla\times\bold{A} + \nabla\times\bold{B} or curl(\bold{A} + \bold{B}) = curl\bold{A} + curl\bold{B}
  4. \displaystyle \nabla\cdot(U\bold{A}) = (\nabla U)\cdot\bold{A} + U(\nabla\cdot\bold{A})
  5. \displaystyle \nabla\times(U\bold{A}) = (\nabla U)\times\bold{A} + U(\nabla\times\bold{A})
  6. \displaystyle \nabla\cdot(\bold{A}\times\bold{B}) = \bold{B}\cdot(\nabla\times\bold{A}) - \bold{A}\cdot(\nabla\times\bold{B})
  7. \displaystyle \nabla\times(\bold{A}\times\bold{B}) = (\bold{B}\cdot\nabla)\bold{A} - \bold{B}(\nabla\cdot\bold{A}) - (\bold{A}\cdot\nabla)\bold{B} + \bold{A}(\nabla\cdot\bold{B})
  8. \displaystyle \nabla(\bold{A}\cdot\bold{B}) = (\bold{B}\cdot\nabla)\bold{A} + (\bold{A}\cdot\nabla)\bold{B} + \bold{B}\times(\nabla\times\bold{A}) + \bold{A}\times(\nabla\times\bold{B})
  9. \displaystyle \nabla\cdot(\nabla U) \equiv \nabla^2U \equiv \frac{\partial^2U}{\partial x^2} + \frac{\partial^2U}{\partial y^2} + \frac{\partial^2U}{\partial z^2} is called Laplacian of U and
    \displaystyle \nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} is called Laplacian operator.
  10. \displaystyle \nabla\times(\nabla U) = 0. The curl of the gradient of U is zero.
  11. \displaystyle \nabla\cdot(\nabla\times\bold{A}) = 0. The divergence of the curl of \bold{A} is zero.
  12. \displaystyle \nabla \times (\nabla \times \bold{A}) = \nabla (\nabla \cdot \bold{A}) - \nabla^2\bold{A}

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です