Determinants

Pocket

If the matrix A in (1) is a square matrix, then we associate with A a number denoted by

\displaystyle \Delta = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{an} \\  a_{21} & a_{22} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots \\  a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|\cdots (9)

called the determinant of A of order n, written det(A). In order to define the value of a determinant, we introduce the following concepts.

1. Minor

Given any element a_{jk} of \Delta we associate a new determinant of order (n – 1) obtained by removing all elements of the jth row and kth column called the minor of a_{jk}.

2. Cofactor

If we multiply the minor of a_{jk} by (-1)^{j+k}, the result of the elements in any row [or column] by their corresponding cofactors and is called the Laplace expansion. In symbols,

\displaystyle \det{A} = \sum^{n}_{k=1}a_{jk}A_{jk} \cdots (10)

We can show that this value is independent of the row [or column] used.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です