Inverse of a matrix

Pocket

If for a given square matrix A there exists a matrix B such that  AB = I , then B is called an inverse of A and is denoted by A^{-1}. The following theorem is fundamental.

11. If A is a non-singular square matrix of order n [i.e. \det(A) \ne 0], then there exists a unique inverse A^{-1} such that AA^{-1} = A^{-1}A = I and we can express  A^{-1} in the following form

\displaystyle A^{-1} = \frac{(A_{jk})^T}{\det(A)} \cdots(14)

where (A_{jk}) is the matrix of cofactors A_{jk} and (A_{jk})^T = (A_{kj}) is its transpose.

The following express some properties of the inverse:

(AB)^{-1} = B^{-1}A^{-1} ,\ (A^{-1})^{-1} = A \cdots(15)

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です