Systems of linear equations

Pocket

A set of equations having the form

 \left. \begin{array}{ccc}  a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & r_1 \\  a_{21}x_2 + a_{22}x_2 + \cdots + a_{2n}x_n & = & r_2 \\  \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots & \cdots & \cdots \\  a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & r_n   \end{array} \right\}\cdots(16)

is called a system of m linear equations in the n unknowns x_1,\ x_2,\ \cdots,\ x_n. If r_1,\ r_2,\ \cdots,\ r_n are all zero the system is called homogeneous. If they are not all zero it is called non-homogeneous. Any set of numbers x_1,\ x_2,\ \cdots,\ x_n which satisfies (16) is called a solution of the system.

In the matrix form (16) can be written

\displaystyle \left( \begin{array}{cccc}  a_{11} & a_{12} & \cdots & a_{1n} \\  a_{21} & a_{22} & \cdots & a_{2n} \\  \cdots & \cdots & \cdots & \cdots \\  a_{m1} & a_{m2} & \cdots & a_{mn}     \end{array} \right)  \left( \begin{array}{c} x_1 \\ x_2 \\ \cdots \\ x_n \end{array} \right) =   \left( \begin{array}{c} r_1 \\ r_2 \\ \cdots \\ r_n \end{array} \right) \cdots (17)

or more briefly  AX = R \cdots (18)

where A, X, R represent the corresponding matrices in (17).

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です