直交曲線座標における勾配,発散,回転およびラプラシアン

Pocket

 仮に \Phi が一つのスカラー関数であり,また \bold{A} = A_1\bold{e_1} + A_2\bold{e_2} + A_3\bold{e_3} が直交曲線座標 u_1, u_2, u_3 のベクトル関数の時,下記の結果を得ます.

1. \displaystyle \nabla\Phi = grad\Phi = \frac{1}{h_1}\frac{\partial\Phi}{\partial u_1}\bold{e_1} + \frac{1}{h_2}\frac{\partial\Phi}{\partial u_2}\bold{e_2} + \frac{1}{h_3}\frac{\partial\Phi}{\partial u_3}\bold{e_3}

2. \displaystyle \nabla\cdot\bold{A} = div\bold{A} = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}(h_2h_3A_1) + \frac{\partial}{\partial u_2}(h_3h_1A_2) + \frac{\partial}{\partial u_3}(h_1h_2A_3) \right]

3. \displaystyle \nabla\times\bold{A} = curl\bold{A}   = \frac{1}{h_1h_2h_3}\left| \begin{array}{ccc} h_1\bold{e_1} & h_2\bold{e_2} & h_3\bold{e_3} \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1A_1 & h_2A_2 & h_3A_3 \end{array} \right|

4. \displaystyle \nabla^2\Phi = Laplacian\ of\ \Phi\\   = \frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial u_1}\left( \frac{h_2h_3}{h_1}\frac{\partial\Phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2}\left( \frac{h_3h_1}{h_2}\frac{\partial\Phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3}\left( \frac{h_1h_2}{h_3}\frac{\partial\Phi}{\partial u_3} \right) \right]

 仮に (u_1, u_2, u_3)(x, y, z) で置換すると,以下の場合,つまり \bold{e_1}, \bold{e_2} および \bold{e_3}\bold{i}, \bold{j} および \bold{k} で置換され, h_1 = h_2 = h_3 = 1 で置換されるような場合などには,これらの結果は直交座標系の通常の式に短縮されます.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です