DOUBLE INTEGRALS

Pocket

Fig. 6-1

Let F(x, y) be defined in a closed region \cal R of the xy plane. Subdivided \cal R into n subregions \Delta\cal R of area \Delta A_k,\ k = 1,\ 2,\ \dots,\ n. Let (\xi_k, \eta_k) be some point of \Delta\cal R. Form the sum

\displaystyle \sum_{k=1}^{n}F(\xi_k, \eta_k)\Delta A_k\cdots(1)

Consider

\displaystyle \lim\limits_{n\rightarrow\infty}\sum^{n}_{k=1}F(\xi_k, \eta_k)\Delta A_k\cdots(2)

where the limit is taken so that the number n of subdivisions increases without limit and such that the largest linear dimension of each \Delta \cal R approaches zero. If this limit exists it is denoted by

\displaystyle \iint_{\cal R}F(x, y)dA\cdots(3)

and is called the double integral of F(x, y) over the region \cal R.

It can be proved that the limit dose exist if F(x, y) is continuous (or piecewise continuous) in \cal R.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です