TRANFORMATIONS OF MULTIPLE INTEGRALS

Pocket

In evaluating a multiple integral over a region \cal R, it is often convenient to use coordinates other than rectangular, such as the curvilinear coordinates considered in Chapter 5.

If we let (u, v) be curvilinear coordinates of points in a plane, there will be a set of transformation equations x = f(u, v),\ y = g(u, v) mapping points (x, y) of the xy plane into points (u, v) of the uv plane. In such case the region \cal R of the xy plane is mapped into a region {\cal R}' of the uv plane. We then have

\displaystyle \underset{\cal R}{\iint}F(x, y)dxdy = \underset{{\cal R}'}{\iint} G(u, v)\left|\frac{\partial (x,y)}{\partial (u, v)}\right| dudv \cdots(9)

where G(u, v) \equiv F\{f(u,v), g(u,v)\} and

\displaystyle \frac{\partial (x, y)}{\partial (u, v)} \equiv \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right| \cdots (10)

is the Jacobian of x and y with respect to u and v.

Similarly if (u, v, w) are curvilinear coordinates in three dimensions, there will be a set of transformation equations x = f(u, v, w), y = g(u, v, w), z = h(u, v, w) and we can write

\displaystyle \underset{\cal R}{\iiint}F(x, y, z)dxdydz = \underset{{\cal R}'}{\iiint} G(u, v, w) \left| \frac{\partial (x, y, z)}{\partial (u, v, w)} \right|dudvdw \cdots(11)

where G(u, v, w) \equiv F\{f(u, v, w), g(u, v, w), h(u, v, w)\} and

\displaystyle \frac{\partial (x, y, z)}{\partial (u, v, w)} \equiv \left| \begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{array} \right|\cdots(12)

is the Jacobian of x, y and z with respect to u, v and w.

The results (9) and (11) correspond to change of variables for double and triple integrals.

Generalizations to higher dimensions are easily made.

Pocket

投稿者: admin

趣味:写真撮影とデータベース. カメラ:TOYO FIELD, Hasselblad 500C/M, Leica M6. SQL Server 2008 R2, MySQL, Microsoft Access.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です