Let C be a curve in the xy plane which connects points and , (see Fig. 6-2). Let and be single-valued functions defined at all points of C. Subdivide C into n parts by choosing n – 1 points on it given by . Call and and suppose that points are chosen so that they are situated on C between points and . Form the sum
The limit of this sum as in such a way that all quantities approaches zero, if such limit exists, is called a line integral along C and is denoted by
or
The limit does exist if P and Q are continuous (or piecewise continuous) at all points of C. The value of the integral depends in general on P, Q, the particular curve C, and on the limits and .
In an exactly analogous manner one may define a line integral along a curve C in three dimensional space as
where , and are functions of , and .
Other types of line integrals, depending on particular curves, can be defined. For example, if denotes the arc length along curve C in the above figure between points and , then
is called the line integral of along curve C. Extensions to three (or higher) dimensions are possible.